IFIP working conference on Uncertainty quantification in scientific computing, Boulder, 1-4 Aug, 2011.

“Scientific Computation and the Scientific Method:
a tentative road map for convergence”

Les Hatton

Professor of Forensic Software Engineering
CISM, Kingston University
L.Hatton@kingston.ac.uk

Version 1.1: 28/Jul/2011

Overview

+

= Popperian deniability

= Some early thoughts

= A tentative model for defect
= Conclusions

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Popperian deniability

= Truth cannot be verified by scientific testing, it can
only be falsified.

= Falsification requires quantification of experimental
error.

= This has been at the heart of scientific progress.

= This process Is NOT generally followed in scientific
(or indeed any other kind of) computation.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

The problem with defects

= We seek quantification. This means we would like to know
how big the errors in our numerical experiments are.

= Unfortunately, most of what we know concerns how many
defects are present and not how big a problem they cause.
= More than a whiff of chaos
= {inta; b= (a=0)+ a; ... bcan be almost anything.
= 14 out of 14 compilers got volatile wrong in a 2008 study
= Undetected array bound violations still with us in 2011 !

= Any engineering technology which relies on somebody
getting 1t ‘right’ 1s fundamentally flawed.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Overview

+

= Popperian deniability

= Some early thoughts

= A tentative model for defect
= Conclusions

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Some early thoughts

+

By 2010 I was reasonably convinced that:

= N-version experiments are exceedingly valuable at highlighting
differences, (for whatever reason), and effective at reducing
those differences. (1994)

= Scientific software is littered with statically detectable faults
which fail with a certain frequency (1997)

= The language does not seem to make much difference. (1999-)

= Defects appear to be fundamentally statistical rather than
predictive, (2005-8)

= Software systems exhibit implementation INdependent
behaviour (2007-10).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Quantification of differences by
N-version (1994)

4500m

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Convergence using N-version
— but to what ?

AVERAGE ABSOLUTE DIFFERENCE : PASS 1

40

II%N

30

% Difference
n
e

15+

Company 2

Company 3

Company 5

Company 6

Company 7

Company 8

Company 9

Before

40

AVERAGE ABSOLUTE DIFFERENCE : PASS 2

10

0

T T T
3
Processing Coordinates

After

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Are defects related to static
complexity ?

= There is little evidence that complexity measures
such as the cyclomatic complexity v(G) are of any
use at all in predicting defects

Cyclomatic Complexity v. Defects

Defects |

NAG Fortran library over 25 years CyCIOmatIC number V(G)

(Hopkins and Hatton (2008))

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Is there anything unusual about
‘zero’ defect ?

Cyclomatic Complexity v. Defects

1 T 1

14 |

PCA and endless 10 % ;
rummaging
suggest not. This

defacis
@®©
T

may undermine 4 B :)
root-cause G
aﬂa/J/S/:S'- 4 L HEHHH + +

A R U 4 + + - +
2 [HHEEH St + + +
H++ o+ +

[HHHHHHH R

0 lmnnmmmmﬂnnmnmm‘.: e — — - 1 -
0)] 100 150 200 280 200
Cyclomalic comp sty

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Software size distributions
appear power-law in LOC

All size distributions

0.1 . e
[Package 1 —]

001

Fraquancy

0.001 ol L " U ST S S T | " " P
10 100 1000

rank

Smoothed (cdf) data for 21 systems, C, Tcl/Tk and Fortran, combining
603,559 lines of code distributed across 6,803 components, (Hatton
2009, IEEE TSE)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Overview

+

= Popperian deniability

= Some early thoughts

= A tentative model for defect
= Conclusions

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A tentative model

+

We are looking for:-

Language independent behaviour
Application independent behaviour
Predicts power-law behaviour in component sizes

Predicts simple and apparently power-law behaviour in
defect, (observed frequently)

Makes other testable predictions.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

What Is power-law behaviour ?

+

Frequency of occurrence n; given by n. =—

This is usually shown as

Inn. =In(nc)— plini

which looks like
Inn,,

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

nc
P

» N i

Is power-law behaviour

‘_L persistent ?

= Question: Does power-law behaviour in component
size establish itself over time as a software system
matures or Is It present at the beginning ?

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Sampes vith walues X

Is power-law behaviour
persistent ?

1000 -

100 -

Every 3rd C wversion

10 -

PR |
1000

Sarpes with wlues X

10000

1000 -

100 -

10

Each Fortran Mark 12-19

1

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Is power-law behaviour

‘_L persistent ?

= Answer: Power-law behaviour in component size

appears to be present at the beginning of the
software life-cycle.

Given that this appears independent of programming
language and application area, can we explain why ?

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Building systems

= When we build a system we are making choices

= Choices on functionality
= Choices on architecture
= Choices on programming language(s)

= There Is a general theory of choice — Shannon
Information theory.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Building systems

= Software component size - approximate

= Number of lines of code. This is quite dependent on the programming
language, (consider the influence of the pre-processor in C and C++
for example).

= Software component size - better
= Based on tokens of a programming language.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Building systems from tiny
pleces

= Tokens of language

= Fixed tokens. You have no choice in these. There are 49 operators
and 32 keywords in ISO C90. Examples include the following in C,
(but also in C++, PHP, Java, Perl ...):

{}[10)ifwhile*+*===///;:
= Variable tokens. You can choose these. Examples include:-
Identifier names, constants, strings
= Every computer program is made up of
combinations of these, (note also the Boehm-

Jacopini theorem (1966)).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size
‘_L behaviour using Shannon entropy

Suppose component i in a software system has t, tokens in
all constructed from an alphabet of a, unique tokens.

First we note that a = af + av (I)

/)

Fixed tokens of a language, { Variable tokens, (id names
[1; while. ... and constants)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size
i behaviour using Shannon entropy

An example from C;
void bubble(int a[], int N)

{
. g . inti, j, t
voidint()[14, ; for(i = N; i >= 1; i)
; {
Fixed for = >= -- <= for(j = 2;j <=i; j++)
(18) ++ if > - {
i{f(a[J'-l] > a[j])
+ }t = a[j-1]; a[j-1] = a[j]; alil = t;
by
by
variable bubblea Nijt12 J Total
(8) (94)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size
‘_L behaviour using Shannon entropy

For an alphabet a, the Hartley-Shannon information content
density I". per token of component i is defined by

tl

I, =log(a;a;..a;) = Iog(afi) =1;log(&;)

We think of I', as fixed by the nature of the algorithm we
are implementing.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Consider now building a system

‘_L as follows

Consider a general software system of T tokens divided
into M pieces each with t; tokens, each piece having an
externally imposed information content density property I'.
associated with it. MNote: no nesting.

1 |23 ... T:it

N

M

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

General mathematical treatment

+

The most likely distribution of the I'; (= L/t)subject to the
constraints of T and I held constant

T =§:ti and I=>tl"
=1 '
IS t e_ﬁl |
P ==

T 4
e |

where p; can be considered the probability of piece i
occurring with a share I, of I. B is a constant.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

General mathematical treatment

+

I
However | 'i — [

R _ |
?]—(t_ Iog(ai)j log(&;)

y ~3
Giving the p ~ 6
general theorem | | _~

This states that in any software system,
conservation of size and information (I.e. choice) is
overwhelmingly likely to proauce a power-law
alphabet distribution. (Think ergodic here).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

One last little bit of maths

+

= Note that for small components, the fixed token
overhead Is a much bigger proportion of all tokens,
a: >>a, (1), SO

-5
_ 1 s e Spl. al)| e s
- i 0207 <6 2120,

Constant

= For large components, the general rule takes over

P ~ 6‘i jﬁ

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Application to software systems

¥

So we are looking for the following signature

i
¢

log p,

log |

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

with wiima x

with wiima x

Some results

Idelibn 4.6.3 (C+) Linux kemel 2639 (C) Opem JDK 143 (Java) Ada yalidation suite
Rl
oomm - =0
§ oml § o i
3 1 3
£ E] £
£ 2 2
i i i
I = I I
1= -

100 1m
2t x karw) i x fkrm) 2tz x rkarw]

C++ C Java Ada

34 million lines of Ada,C,C++,Fortran Jave,Tel

2-D and 3-D graphics (Fartran 77) Numerical Recipes in C

. oomm |

"

n a
i = i 1omm |

] :

: 1

1 1
} = } Heond
10 b

= m 100 &=
z w o 2tz x pkarw) . - = s

i x fokore)

Fortran C Numerical 34 million lines of Ada, C, C++,
Fortran, Java, Tcl in 75 systems.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Some model predictions

+

= Suppose there is a constant probability P of making
a mistake on any token. The total number of defects
IS then given by d; = P.t; Then

_l e
P Q(ﬂ)ﬁ., ¢ "~Cq_

™~ This step uses Zipf's law, Hatton (2009)

= So defects will also be distributed according to a
power-law — I.e they will cluster.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Defect clustering in the NAG Fortran
library (over 25 years)

Defects | components | XLOC NAG defects ,
0 2865 179947 | oo) o
1 530 47669 T + +
2 129 14963 *
3 82 13220 |+ ™ S
4 31 s084 | | '
5 10 1195
6 4 1153
7 3 1025 i
>7 5 1867 o

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Clustering can be exploited:
Conditional probability of
finding defects™

Probability of finding defects

08

0g

04 |

Probability of finding anothar dafeq

0z

0 1 L 1 1
0 2 4 [& 10
Numbsar of defecis =0 far

* See, Hopkins and Hatton (2008), http:/ /www.leshatton.org/NAGO01 01-08.html

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

http://www.leshatton.org/NAG01_01-08.html
http://www.leshatton.org/NAG01_01-08.html
http://www.leshatton.org/NAG01_01-08.html

Overview

+

= Popperian deniability

= Some early thoughts

= A tentative model for defect
= Conclusions

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Conclusions

= Bounding defects Is inherently difficult but N versions
(or open source) both seem to offer ways of improving
software agreement but by an unknown amount.

= Static structural relationships with defect appear to be a
blind alley, (cyclomatic complexity ...,).

= Defects cluster and this can be exploited.

= Software systems appear to exhibit macroscopic
behaviour independent of implementation or language

Pi ~ ei jﬂ

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

References

My writing site:-
http://www.leshatton.org/

Specifically,
http://www.leshatton.org/variations 2010.html

Thanks for your attention.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

http://www.leshatton.org/
http://www.leshatton.org/variations_2010.html

